
Chapter 1

Introduction to Field Line Helicity
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Field line helicity measures the net linking of magnetic flux with a single magnetic field line.
It offers a finer topological description than the usual global magnetic helicity integral, while still
being invariant in an ideal evolution unless there is a flux of helicity through the domain boundary.
In this chapter, we explore how to appropriately define field line helicity in different volumes in a
way that preserves a meaningful topological interpretation. We also review the time evolution of
field line helicity under both boundary motions and magnetic reconnection.
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1.1. Definitions of field line helicity
We briefly review topological measures of magnetic field structure. Some of these refer to the
structure of the total field within a volume (the magnetic helicity), others to the relationship
between individual pairs of field lines (linking and winding). Field line helicity is intermediate
between these ideas, as it measures the net linking or winding of one field line with the total field.
Helicity integrals depend on both the tangling of field lines with each other, as well as the topology
and geometry of the volume in which the field lines reside. A strong rationale for considering
topological measures is that field line topology is conserved in ideal evolution of the field [Moffatt,
1969].

1.1.1. Definitions of field line helicity for closed volumes
The simplest situation occurs with two closed field lines residing within a volume V (or infinite
space) where the field lines do not cross the boundary of V. Historically, Gauss (1809) discovered
a double line integral which measures the linking of two closed curves L1 and L2. Let positions on
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Figure 1.1: For this link (the Whitehead link) the Gauss linking number, L12, is zero. In general, the

linking number equals half the difference between the number of positive crossings and the number of

negative crossings, as seen in any plane projection.

the curves be given by x⃗(σ) and y⃗(τ). Then

L12 = − 1

4π

∮
L2

∮
L1

dx⃗

dσ
· r⃗
r3

× dy⃗

dτ
dσ dτ, (1.1)

where r⃗ = x⃗− y⃗. This may be calculated by counting signed crossings (see Figure 1.1).
For a magnetic field consisting of a finite collection of closed magnetic flux tubes (a very special

case), we can define an overall invariant

HN =

N∑
i=1

N∑
j=1

LijΦiΦj , (1.2)

where Φi represents the magnetic flux of each tube and Lij is the linking number between the tubes.
This invariant is called the magnetic helicity. For a more general magnetic field that nevertheless
consists entirely of closed field lines (still a special case), we can take N → ∞ in equation (1.2)
so that the sums become integrals. Accounting for the magnetic flux, the tangent vectors in (1.1)
become magnetic field vectors and the magnetic helicity may be written

H = − 1

4π

∫
V

∫
V
B⃗(x⃗) · r⃗

r3
×B(y⃗) d3x d3y. (1.3)

Here the integral is over all space, or over a volume containing all field lines. In fact, in the above
equation we do not need to assume that the field lines actually close upon themselves — some may
ergodically fill a subvolume, or twist around a toroidal surface with an irrational winding number.
Such fields can be constructed as the limit as N → ∞ of a sequence of fields consisting of N
thin closed flux tubes [Arnol’d and Khesin, 1998]. Thus, whether or not the field lines close upon
themselves, we can approximate any magnetic field as a collection of such tubes.

Returning to the finite set of N flux tubes with fluxes Φi, notice that equation (1.2) can be
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written as

HN =

N∑
i=1

AiΦi; Ai =

N∑
j=1

LijΦj . (1.4)

The limit as N → ∞ of Ai is in itself another topological measure, this time defined for every
individual magnetic field line – this is what we call the field line helicity.

Since the field lines do not cross the boundary of the volume, we can now use the Biot-Savart
formula

A⃗(x⃗) = curl−1B⃗(x⃗) ≡ − 1

4π

∫
V

r⃗

r3
× B⃗(y⃗) d3y (1.5)

to find

H =

∫
V
A⃗ · B⃗ d3x. (1.6)

Historically, invariance of the expression (1.6) was known before the interpretation in terms of
Gauss linking number was identified [Moffatt, 1969, Moffatt and Ricca, 1992]. For a closed line L
within the field, the equivalent expression for the field line helicity will simply be

A(L) =

∮
L
A⃗ · dl. (1.7)

This is just the net magnetic flux encircled by L, and since L is a closed curve, it is manifestly gauge
invariant. We remark that Yahalom [2013] interprets A(L) as a magnetohydrodynamic analogue of
the Aharonov-Bohm effect from quantum mechanics: if B⃗ = ∇χ×∇η then A⃗ = χ∇η+∇ζ, so that
a non-zero H requires jumps in ζ around closed field lines, such jumps giving A(L).

Suppose our volume V is simply connected (e.g. a sphere, not a torus). Note here that because L
is closed, we can gauge transform A⃗→ A⃗+∇ϕ for an arbitrary gauge function ϕ without affecting
A(L). If we have a multiply connected volume a difficulty arises: the wrong choice of A⃗ may imply
the existence of magnetic flux in the external region that threads through a hole, which makes∮
L A⃗ · dl dependent on the unknown external field. To remedy this, one can restrict the gauge of A⃗

so that
∮
L A⃗ · dl = 0 for any closed curve on the boundary encircling a hole the long way around

[see also MacTaggart and Valli, 2019].

1.1.2. Definitions of field line helicity for open volumes
We now go to volumes with flux crossing the boundary. Suppose a field line forms a loop, with
both ends on the same boundary (as for example in Figure 1.2b). An early approach [Antiochos,
1987] involves drawing a geodesic between the two endpoints, thus forming a closed curve for which∮
A⃗ · dl can be measured. This scheme does not integrate to the full helicity, however. We wish to

define field line helicity to be consistent with full helicity, but also so that gauge transformations of
A⃗ do not change our results. There are two principle approaches to this problem. One consists of
defining topological quantities such as winding number, then summing to find the helicities. If the
boundary flux does not move, then ideal motions of the field lines will not change the windings, so
field line helicity will be conserved. If the boundary flux does move, then topological structure can
cross the boundary leading to changes in helicity measures. This will be discussed in Section 1.2.

The second approach is to measure helicity relative to a potential field, i.e. a field with zero
current in the volume. As the potential field is the minimum energy state for given boundary
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Figure 1.2: Examples of a pair of magnetic field lines in different domains, including (a) the volume

between two parallel planes; (b) the volume above a plane; (c) a spherical shell (the volume between two

concentric spheres); and (c) the volume between two more general surfaces.

conditions, its structure only depends on the shape of the boundary and the distribution of flux
on the boundary (and for multiply connected volumes, specified new fluxes around each hole). For
highly symmetric volumes such as those bounded by planes or spheres, the two approaches give
identical results.

For more complicated volumes, the shape of the boundary or boundaries can add extra terms
which distinguish the two approaches, as will be discussed in Section 1.1.2.5. A definition of field
line helicity can also be based on relative helicity [Moraitis et al., 2019], to be discussed in Section
1.1.3.

1.1.2.1. Volumes between parallel planes
Suppose the volume of interest V is the space between parallel planes, say z = 0 and z = h, as
illustrated in Figure 1.2a. We will first assume that all field lines start at z = 0 and end at z = h.
Then no two field lines link in the Gauss sense; however, they will twist about each other through
some angle δθij . The winding number makes this an integer for complete twists,

w ij =
1

2π
δθij . (1.8)
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For the example in Figure 1.2a, we have w ij = (θb − θa)/(2π) + 1.
We can now adopt formulae for the helicity and field line helicity similar to the closed field case,

with winding number replacing linking number. We denote horizontal positions by x = (x, y). Also,
we distinguish positions in the bottom x − y plane by x̃ = (x, y, 0). Let Li be the field line with
foot point at x̃i. Also let w(x̃i, x̃j) be the winding number between Li and Lj . Then the field line
helicity of Li will be

A(Li) =

∫
w(x̃i, x̃j)Bz(x̃j) d

2x̃j . (1.9)

Let us build up A(Li) one plane at a time; in other words find expressions for dA(Li)/dz. For
now we make the simplifying assumption that Bz > 0 everywhere. There are two contributions to
the z derivative: first (I), horizontal flux in the plane can wrap around the field line Li. Secondly
(II), Li can move horizontally about other field lines. Now, θ̂ij = ẑ × r̂ij is the angular direction at
xj about xi, with r⃗ij = xj − xi. Also, a field line travelling from (r, θ, z) to (r + dr, θ + dθ, z + dz)
satisfies the equation

dr

Br
=
rdθ

Bθ
=

dz

Bz
. (1.10)

Thus for a field line at xj = (x, y, z), (writing B⃗j = B(xj), etc.)(
dθij
dz

)
I

=
Bθj

rijBzj
=
B⃗j · ẑ × r⃗ij
r2ijBzj

= ẑ · r⃗ij × B⃗j

r2ijBzj
. (1.11)

Next, the field line Li can move horizontally around other field lines. In this case,(
dθij
dz

)
II

= −ẑ · r⃗ij × B⃗i

r2ijBzi
=

B⃗i

Bzi
· r⃗ij ×Bzj ẑ

r2ijBzj
. (1.12)

Summing the last two equations, the total change in winding between lines Li and Lj is

dθij
dz

=
B⃗i

Bzi
· r⃗ij × B⃗j

r2ijBzj
. (1.13)

Let Sz be the horizontal plane at height z. Suppose we add up contributions from all over the
plane: we multiply the above expression by Bzjd

2xj and integrate. Dividing by 2π to make complete
turns into integers,

dA(Li)

dz
=

1

2π

B⃗i

Bzi
·
∫
Sz

r⃗ij × B⃗j

r2ij
d2xj . (1.14)

This expression for the field line helicity can be expressed very simply using a special vector
potential - the winding gauge [Prior and Yeates, 2014]: for a point on field line Li at (x, y, z),

A⃗W (x, y, z) =
1

2π

∫
Sz

r⃗ij × B⃗j

r2ij
d2xj . (1.15)

We have

A(Li) =

∫
A⃗W · dl =

∫
A⃗W · dl

dz
dz, (1.16)
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so
dA(Li)

dz
= A⃗W · dl

dz
= A⃗W · B⃗i(x, y, z)

Bzi
. (1.17)

1.1.2.2. Volume above a plane
In the previous section we assumed that Bz > 0 everywhere. Thus the field lines were braided
about each other, and simple winding numbers sufficed to measure pairwise entanglements. If we
remove the restriction on Bz, then field lines can go up and down. We will remove the restriction
of an upper plane as well in the following discussion, although that is not strictly necessary. Such
a domain is illustrated in Figure 1.2b.

If field lines can form loops which go up and down, we can measure topological structure in a
few ways. One method is to cut the field lines at any local minima or maxima where Bz = 0, then
sum winding numbers as before [Berger and Prior, 2006]. The winding gauge will still work in this
situation, as the formulae for calculating A⃗W do not require Bz > 0.

A second method, when considering the winding between two loops, consists of examining the
angles of the quadrilateral formed by the four foot points of the loops [Berger, 1986, Demoulin
et al., 2006]. Consider the upper half space {z > 0}, shown in Figure 1.2b. The foot points of loops
1 and 2 are labelled 1+, 1−, 2+, and 2−, where Bz > 0 at 1+ and 2+. If the loops cross as seen
from above, we assume that loop 1 is the upper loop. Consider the quadrilateral 1+2+1−2−. Let α
and β be the angles at vertices 1+ and 1− respectively. Then (from considering the net change of
helicity found when bringing the two loops in from infinity) Berger [1984] showed that

w12 =
1

2π
(α+ β). (1.18)

1.1.2.3. Poloidal-toroidal representation
The winding gauge employed in the previous sections is equivalent to the vector potential found
when employing a poloidal-toroidal representation for the field [Moffatt, 1978, Berger and Hornig,
2018].

Because the magnetic field B⃗ is a three-vector subject to one condition (∇ · B⃗ = 0) we can
often express it in terms of two scalar functions. Here we let P and T be the poloidal and toroidal
functions. Let the horizontal surface Laplacian be ∆∥ = ∂2/∂2x + ∂2/∂2y . In any plane z = const., P
is determined by the vertical flux,

∆∥P = −Bz (1.19)

while T is determined by the vertical current,

∆∥T = −Jz = −(∇× B⃗)z. (1.20)

We assume T , P , Bz and Jz all vanish at infinity. Then the surface Laplacians have unique solutions,

P (x, y) = − 1

2π

∫
Sz

Bz(x⃗
′) ln |x⃗− x⃗′| d2x′; (1.21)

T (x, y) = − 1

2π

∫
Sz

Jz(x⃗
′) ln |x⃗− x⃗′| d2x′. (1.22)
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We can now create a vector potential

A⃗ = ∇× P ẑ + T ẑ. (1.23)

Note that the horizontal components of A⃗ only involve the poloidal function P . Furthermore, the
horizontal divergence of A⃗ vanishes, ∇∥ · A⃗∥ = 0. One can then employ (1.21) and (1.22) to show

that this vector potential is identical to the winding gauge, A⃗W = ∇×P ẑ+ T ẑ, provided that the
volume considered is infinite in the x and y directions. We can again employ this vector potential
to calculate field line helicities. The total helicity can also be regarded as the net linking of toroidal
and poloidal fields [Berger and Hornig, 2018],

H = 2

∫
V
∇× (T ẑ) · ∇ × (P ẑ) d3x. (1.24)

1.1.2.4. Volumes bounded by a sphere
Spherical boundaries – such as in Figure 1.2c – can, for the most part, be treated in the same way as
planar boundaries, with the radial unit vector r̂ replacing the vertical vector ẑ. In essence, winding
angles become azimuthal angles: suppose we consider three points A, B, and C on a sphere. Rotate
the spherical coordinates so that B is at the North pole and A is at azimuthal coordinate ϕ = 0.
Then the angle ∠ABC equals the azimuthal coordinate of C.

The poloidal and toroidal flux functions are [Kimura and Okamoto, 1987]

P (θ, ϕ) =
1

4π

∫
S
Br(x⃗

′) ln(1− cos ξ) d2x′; (1.25)

T (θ, ϕ) =
1

4π

∫
S
Jr(x⃗

′) ln(1− cos ξ) d2x′, (1.26)

where
cos ξ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) (1.27)

is the spherical distance between (θ, ϕ) and (θ′, ϕ′). With these functions,

A⃗ = ∇P × r̂ + T r̂; B⃗ = ∇× (∇P × r̂) +∇T × r̂. (1.28)

Some care must be taken in spherical geometries. One must make sure that no magnetic
monopoles are hiding inside the sphere – i.e. the net flux through the sphere must vanish (similarly
for the net current).

Also, in the special case of a spherical shell geometry where flux enters at the inner sphere and
exits at the outer sphere (as in Figure 1.2c) the separation of helicity into self helicity and mutual
helicity can be ambiguous [Campbell and Berger, 2014]. Self helicity measures the twist and writhe
of individual tubes, while mutual helicity measures linking and intertwining between tubes. This
will not affect the field line helicity, however.

1.1.2.5. More general volumes
For volumes bounded by planes or spheres there are natural definitions of angle and winding angle
depending only on the Euclidean metric. The winding gauge, or equivalently the poloidal-toroidal
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vector potential, captures this natural definition. We could also consider a volume with boundaries
consisting of a bottom plane and side boundaries, where flux only crosses the bottom plane. Such
a volume could represent a closed active region. We could choose winding angles without regard to
the side boundaries, using the same winding gauge. An alternative will be described below, when
using relative measures of helicity.

Next consider a volume bounded by one or two simply connected surfaces, but which lack the
symmetry of planes or spheres. An example is shown in Figure 1.2d. Here definitions of angle are
less obvious. However, we can still employ a generalization of the poloidal-toroidal representation
[Berger and Hornig, 2018] to define the winding gauge.

Let our volume V be sliced into nested surfaces. Employ coordinates (u, v, w) where w = const.
labels one of the nested surfaces. The toroidal field (which is responsible for the current perpendic-
ular to surfaces of constant w) can be written in terms of a toroidal function T as before:

B⃗T = ∇× A⃗T ; A⃗T = T∇w. (1.29)

However, the poloidal field is more complicated. Let the normal component of the curl be given
by the operator D,

DV⃗ = n̂ · ∇ × V⃗ . (1.30)

This operator has an inverse D−1. To make the inverse unique, we require that the inverse normal
curl gives a divergence free vector field parallel to the surface. Thus

D−1f · n̂ = 0; ∇ · D−1f = 0. (1.31)

Let Bn be the normal magnetic field. Ordinarily, we would write the poloidal field as

˜⃗
AP = D−1Bn; B⃗P = ∇× ˜⃗

AP . (1.32)

However, without spherical or planar symmetry this magnetic field may have nonzero normal cur-
rent Jn – but the toroidal field has already taken care of Jn. Thus [Berger and Hornig, 2018] we
must add a shape term

A⃗S = TS∇w (1.33)

where
∇×∇×As · n̂ = −∇×∇× ˜⃗

AP · n̂. (1.34)

Putting it all together, the generalized winding gauge becomes

A⃗W = D−1Bn + (T + TS)∇w. (1.35)

1.1.3. Relative field line helicity
In the previous sections, helicity and field line helicity have been defined in terms of geometrical
quantities such as winding and linking. The helicity of open fields in a volume V can also be defined
in terms of how much the magnetic structure within V contributes to the helicity of all space [Berger
and Field, 1984]. Let the field inside V be called B⃗V . Also consider a potential (zero current) field
P⃗V inside V with the same boundary conditions B⃗V · n̂|S = P⃗V · n̂|S . A potential field minimizes the
magnetic energy in the volume subject to the constraint of the given boundary flux distribution.
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Hence potential fields can be said to have the minimum structure (more accurately, their structure
only depends on the boundary conditions, so they add zero additional structure to the field).

Here we compare the total helicity of all space with the helicity that would be obtained if,
inside V, B⃗V were replaced by P⃗V . All integrals are gauge invariant, so the difference between the
two helicities will also be gauge invariant. Let space external to V be V ′. Then the relative helicity
HR(V) is

HR(V) = H(BV , BV ′)−H(PV , BV ′). (1.36)

It is important to note that the calculation of HR(V) does not require knowledge of the external
field BV ′ [Berger and Field, 1984, Finn and Antonsen, 1985].

For symmetric volumes (i.e. boundaries consisting of a plane or parallel planes or one or two
concentric spheres), the topological and relative definitions give the same answers [Berger and Field,
1984, Berger and Hornig, 2018]. For more complicated geometries they may differ. For example,
suppose the volume V consists of a helical tube rising between parallel planes. Suppose we place a
potential field both inside and outside of V. Then the helicity of all space will be non-zero because
of the helical structure. Now add some axial current inside V so that the field has extra twist. Then
the relative helicity inside V will only measure this extra twist, because the helicity due to the axis
writhe is subtracted off with the potential term.

The relative helicity of a potential field is, by definition, zero. Suppose again that the boundary
is planar or spherical. Then the topological helicity (summing winding numbers as in previous
sections) will be zero as well: the potential field is purely poloidal so there is no linkage between
toroidal and poloidal components. However, for a potential field, the field line helicities of individual
field lines may not be zero, even if they sum to zero [Yeates, 2020]. These potential field line helicities
reflect irregularities and lack of mirror symmetry in the distribution of boundary flux [Bourdin and
Brandenburg, 2018]. Thus field line helicity of the potential field can help to characterize magnetic
distributions, for example in the solar photosphere.

This raises a question, however: if there are currents inside a volume, how do they change the
field line helicities from their minimal (potential field) values? We need to subtract off the potential
field line helicities to remove the contributions from the boundary flux distribution. Thus, we can
adopt the relative helicity viewpoint for field line helicity as well [Yeates and Page, 2018, Moraitis
et al., 2019, Moraitis et al., 2021]. First, to avoid gauge ambiguity, we employ the same gauge
conditions as apply in the poloidal-toroidal formulation. Let the potential field be P⃗ with vector
potential A⃗P . In particular, for the components of the vector potentials parallel to the boundary,
we have

∇ · A⃗∥ = ∇ · A⃗P∥ = 0; (1.37)

A⃗∥ = A⃗P∥. (1.38)

It can be shown [Yeates and Page, 2018] that this choice of gauge for A⃗P minimises the boundary
integral

∮
S |A⃗P × n̂|2 d2x. Next let α+ be the positive endpoint of a field line. The field lines through

α+ for B⃗ and P⃗ will in general have different trajectories, and will connect to different exit points
α− and αP−. We can now take the difference in field line helicities

A+(α+) =

∫ α−

α+

A⃗ · dl −
∫ αP−

α+

A⃗ · dl. (1.39)
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We could also do this for the negative endpoints. Starting at the same negative endpoint α−, we
could track the field lines backwards to either α+ or αP+. In this case, we can write

A−(α−) =

∫ α−

α+

A⃗ · dl −
∫ αP−

αP+

A⃗ · dl. (1.40)

Finally, we can take the average of the two (for the endpoints α+ and α− of the true field line B⃗
to find

A0 =
1

2
(A+(α+) +A−(α−)). (1.41)

This is the measure of relative field line helicity adopted by Moraitis et al. [2019], although those
authors use a slightly different gauge in their computations.

1.2. Ideal evolution
Just like the total magnetic helicity, the field line helicities within a given domain V may change
in two ways: by (i) boundary motions or (ii) non-ideal processes in the interior. In this section we
show how to derive an evolution equation for case (i), while case (ii) is deferred to Section 1.3. We
will give some examples where these have been applied, though much remains to be explored.

If B⃗ evolves ideally in some volume V, so that

∂B⃗

∂t
= ∇×

(
u⃗× B⃗

)
, (1.42)

then it is well known that magnetic field lines retain their identity: if two fluid elements lie on the
same magnetic field line at some initial time, they will continue to do so at all later times. Moreover,
by Alfvén’s Theorem, field lines cannot change their mutual linkage. It follows immediately that
A(L) is preserved for every closed field line L in V. Moreover, any functional of A will also be
preserved, including not only the total helicity

H =

∫
V
A⃗ · B⃗ d3x =

∫
L
A(L)dΦ (1.43)

but also the helicity of any subregion composed of closed field lines, as well as the unsigned helicity
defined by

H =

∫
L
|A(L)|dΦ. (1.44)

To inject or remove field line helicity by a continuous ideal evolution therefore requires open
field lines where Bn ≡ B⃗ · n̂|S ̸= 0 along with u⃗ ̸= 0⃗ on the boundary S, as illustrated in Figure
1.3(b). In this case, the fundamental issue of gauge choice is important. A physically meaningful
approach is to fix something like the winding or poloidal-toroidal gauge for A⃗ at all times. Consider
an open field line Lt, where the subscript t denotes that this line moves with the fluid. To derive
the evolution equation for A(Lt), note first that uncurling (1.42) gives

∂A⃗

∂t
= u⃗× B⃗ +∇ϕ (1.45)
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Figure 1.3: Examples of closed (left) and open (right) field lines in a domain V with connected boundary

∂V. Footpoints of the open field line Lt are denoted x0(t) where B⃗ · n̂|S < 0 and x1(t) where B⃗ · n̂|S > 0.

for some scalar function ϕ(x⃗, t) that depends on the chosen gauge of A⃗ and will generally be non-zero
for the poloidal-toroidal gauge.

Now let Vt,ϵ be an infinitesimal flux tube surrounding Lt and moving with the fluid. Let Φ(Vt,ϵ)

and h(Vt,ϵ) =
∫
Vt,ϵ

A⃗ · B⃗ d3x be the magnetic flux and helicity of this flux tube. Then the rate of

change of field line helicity is

d

dt
A(Lt) =

∂

∂t
lim
ϵ→0

h(Vt,ϵ)

Φ(Vt,ϵ)
(1.46)

= lim
ϵ→0

1

Φ(Vt,ϵ)

dh(Vt,ϵ)

dt
. (1.47)

By the Reynolds’ Transport Theorem, since Vt,ϵ is a material volume, we have

d

dt
h(Vt,ϵ) =

∫
Vt,ϵ

∂

∂t
(A⃗ · B⃗)d3x+

∮
St,ϵ

(A⃗ · B⃗)u⃗ · n̂ d2x, (1.48)

which using (1.45) reduces to

d

dt
h(Vt,ϵ) =

∮
St,ϵ

(
ϕ+ A⃗ · u⃗

)
B⃗ · n̂ d2x. (1.49)

This is just the standard expression for evolution of magnetic helicity in a material volume (e.g.
Moffatt and Dormy [2019] p.61). Since Vt,ϵ is a magnetic flux tube, B⃗ · n̂ is non-zero only on the
two portions of the tube boundary St,ϵ that coincide with the boundary of V – in other words, the

ends of the tube. So substituting into (1.47) and taking the limit, noting that B⃗ · n̂ → Φ(Vt,ϵ) at
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both ends of the tube, gives

d

dt
A(Lt) =

[
ϕ+ A⃗ · u⃗

]x1(t)

x0(t)
, (1.50)

where x0(t) and x1(t) denote the end-points of Lt on the boundary of V.
The expression (1.50) shows that, even though field lines Lt can be uniquely tracked in time

during an ideal evolution, their field line helicities A(Lt) depend on the chosen gauge of A⃗ on the
boundary over time, since this changes both A⃗ · u⃗ and also ϕ, the latter being defined for a given
choice of A⃗ through equation (1.45). For meaningful results this gauge should be chosen objectively
– such as the poloidal-toroidal gauge – rather than for computational convenience. Indeed, it is
always possible to “cancel” the effect of an ideal evolution by choosing ϕ = −A⃗ · u⃗ in equation
(1.45), so that A remains invariant for all field lines, but this is a highly artificial choice; in effect, it
corresponds to measuring winding with respect to a frame moving with the boundary motions. Of
course, if there are no boundary motions, then A will be invariant in time for all field lines provided
that ϕ on the boundary is not varied. In particular, if the boundary is a connected surface then it
is sufficient to fix A⃗ × n̂. In cases such as the volume between two spheres, one must also fix the
integral of A⃗ along a line between the two boundaries.

When there are boundary motions, the winding gauge makes it possible to express the evolution
of A in terms of the mean angular motions of field line endpoints around one another [Berger, 1988,
MacTaggart and Prior, 2021]. In the restricted case where there are boundary motions but they
preserve the boundary distributionB·n̂|S , and in addition the magnetic field has a “simple topology”
(meaning that the mapping from positive to negative endpoints is continuous), Aly [2018] derived
the alternative formula

d

dt
A(Lt) =

[
U
∂ζ

∂U
− ζ

]x1(t)

x0(t)

. (1.51)

Here the boundary motions have been written as u⃗ = (n̂×∇ζ)/B⃗ · n̂, and the gauge of A⃗ has been
chosen in a particular way. Specifically, the parallel components of A⃗ on the boundary are set by
equation (1.38), but with A⃗P = U∇V where U and V are Euler potentials for the reference field
P⃗ = ∇U ×∇V . Formula (1.51) may be shown to be equivalent to (1.50) for this gauge choice.

1.2.1. Simple examples
The simplest examples are obtained by considering a magnetic field between two planes z = 0 and
z = 1, on which B⃗ · n̂|S = Bz = 1, and applying axisymmetric boundary motions on the upper
plane. In this situation, the potential reference field is P⃗ = ẑ at all times, with poloidal-toroidal
vector potential A⃗P = (r/2)θ̂. We fix the gauge of A by setting A⃗× ẑ = A⃗P × ẑ on z = 0 and z = 1,
and by the additional condition (because the boundary has two disconnected components z = 0
and z = 1) that

∫
L A⃗ · dl =

∫
L A⃗P · dl = 0 for the vertical line L at r = 0. This gives us A in the

winding, or equivalently poloidal-toroidal gauge (the two are equivalent in this volume).
Suppose firstly that we apply a rigid rotation of the upper boundary with respect to the lower

one, given by u⃗ = rzθ̂. In this case u⃗ × B⃗ = uθBz r̂ = rzr̂, so maintaining the gauge condition
A⃗× ẑ = A⃗P × ẑ requires, according to (1.45), that

∂ϕ

∂r
= −rz =⇒ ϕ = −r

2z

2
. (1.52)
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Figure 1.4: Simple example where the boundary has two parallel components, one of which is rotated

with respect to the other. The graphs show the azimuthal velocity (top) and rate of generation of field line

helicity (bottom), for the two examples in the text (dashed and solid lines).

Thus for a field line at radius r, equation (1.50) gives

d

dt
A(r) =

[
−r

2z

2
+
(r
2

)
rz

]z=1

z=0

= 0. (1.53)

This shows that a rigid rotation generates no field line helicity (as noted by Yeates et al. [2021]).
In effect, all of the field lines rotate together so that none of them acquires any twist with respect
to the others. This example is shown by the dashed lines in the right-hand panels of Fig. 1.4.

For an example with non-trivial injection of field line helicity, we can apply a localized rotation
u⃗ = 2re−r2 ϕ̂, for which a similar computation leads to a localized patch of field line helicity,

d

dt
A(r) = (r2 + 1)e−r2 . (1.54)

This is shown by the solid lines in the right-hand panels of Fig. 1.4. One obtains the same A
pattern in the topologically equivalent situation of a toroidal flux ring that is localized in z, as
shown by Yeates and Hornig [2014]. Indeed, the initial condition in Fig. 1.8 (later) is produced by
the superposition of six such flux rings, offset so that the field lines follow a tangled pattern.

A final analytical example demonstrates how field line helicity may be injected into a magnetic
field defined on the half-space z > 0 through shearing motions on the lower boundary z = 0,
as opposed to twisting. This models the shearing of an arcade of coronal magnetic loops in the
Sun’s atmosphere. We suppose that the arcade is initially current-free and (for simplicity) invariant
in x, with B⃗ = P⃗ = zŷ − yẑ, the solar surface being the plane z = 0 and the volume V with
z > 0 representing the corona. A suitable poloidal-toroidal reference vector potential is A⃗P =
(y2/2 + z2/2)x̂. Suppose we apply the constant shearing velocity u⃗ = ye−y2 x̂, localised near the
polarity inversion line y = 0. Here u⃗× B⃗ = −uxBz ŷ+ uxBy ẑ, so requiring that n̂× A⃗ = n̂× A⃗P on
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Figure 1.5: Simple example of an initial potential “arcade” being sheared by a flow on the lower

boundary. Although they are largely unsheared, the overlying field lines acquire negative field line helicity,

as may be seen from their negative crossings with the sheared field lines beneath.

the boundary z = 0 implies that

∂ϕ

∂y
= uxBz = −y2e−y2 =⇒ ϕ = −1

4

(√
π erf(y)− 2ye−y2

)
. (1.55)

Substituting into (1.50) and evaluating on the field line rooted at y > 0 then gives

d

dt
A(y) = (y + y3)e−y2 −

√
π

2
erf(y). (1.56)

This profile is shown in Fig. 1.5. The first term vanishes on the unsheared field lines at large y. But
the second term does not. This demonstrates the non-local nature of helicity: the field lines in the
overlying arcade gain a field line helicity because the core of the arcade is sheared. Effectively there
is a magnetic flux passing through them. Indeed, this was precisely the way that Antiochos [1987]
proposed to define field line helicity, as mentioned earlier. Notice here that the sign of the erf(y)
term is negative, consistent with Stokes Theorem and the direction of the sheared field relative to
the orientation of the overlying arcade. One could also infer this sign by looking at the arcade from
above and observing a negative crossing (Fig. 1.5).

1.2.2. Application to the global solar corona
To first approximation, the magnetic field in the Sun’s atmosphere evolves ideally – in response to
emergence of new magnetic active regions from inside the Sun, decay of these strong magnetic fields
due to convective shredding, and transport of the resulting magnetic flux by large-scale motions
such as the Sun’s differential rotation. During these processes, magnetic helicity builds up in the
corona and is ejected into the heliosphere. Field line helicity offers the exciting prospect of a localised
measure for studying where this helicity is located within the corona.
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Figure 1.6: Evolution of field line helicity in a magneto-frictional model of the solar corona as an initial

potential field (a) is sheared by the Sun’s differential rotation for (b) 25 days and (c) 50 days. Field lines

are coloured by their field line helicity in poloidal-toroidal gauge, with red for positive and blue for

negative (for details of the simulation, see [Yeates and Hornig, 2016]).

Yeates and Hornig [2016] used a global magneto-frictional model in a spherical shell to study
how field line helicity evolves in the corona, in response to evolution of the solar surface magnetic
field (Fig. 1.6). In the simulation shown, active region emergence is neglected, so that the dominant
injection of helicity is shearing by differential rotation of field line footpoints on the solar surface.
The behaviour of field line helicity is found to be different on open and closed magnetic field lines.
On open field lines (meaning in this context that one field line endpoint is on the outer boundary),
injected field line helicity is lost at a steady rate through the outer boundary by relaxation of the
field line. By contrast, closed field lines, with both endpoints on the solar surface, can store field
line helicity – like in the simple arcade example in Fig. 1.5.

This storage of helicity on closed field lines is important, because eventually these form twisted
flux ropes that lose equilibrium and erupt, leading to bursts of helicity flux output and believed to
explain the origin of coronal mass ejections. Lowder and Yeates [2017] studied these eruptions in the
magneto-frictional model, and used field line helicity as a diagnostic tool to define flux ropes in the
first place. The overall magnetic flux and helicity content of these structures was found comparable
to that estimated in observations of interplanetary magnetic clouds. Recently, Bhowmik and Yeates
[2021] have used field line helicity to show that episodic losses of helicity in the magneto-frictional
model come not only from the eruption of flux ropes formed along polarity inversion lines in the
low corona, but also from a second type of eruption generated in the overlying streamers. Similar
eruptions are known in MHD simulations [Linker and Mikic, 1995] and have been suggested as
a possible explanation for so-called stealth CMEs that lack an obvious low-coronal source [Lynch
et al., 2016]. Many unanswered questions remain, not least the role of active regions in the global
helicity balance, or the possibility of long-term storage of their helicity in the corona. Field line
helicity will greatly facilitate these investigations.
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1.2.3. Application to solar active regions
Field line helicity also offers the possibility to identify locations of helicity storage on a smaller scale,
within individual active regions, provided three-dimensional magnetic field models are available.
Even in a potential field model, a simple bipolar active region can have non-zero field line helicity if
its field lines are linked with the overlying background field [Yeates, 2020]. But much larger values of
field line helicity are expected in more realistic current-carrying models of active regions. This has
been confirmed by Moraitis et al. [2019] both in idealized MHD models and in extrapolations. For
example, Moraitis et al. [2021] have computed field line helicity in nonlinear force-free extrapolations
of a real active region NOAA 11158 (Fig. 1.7).

Figure 1.7 shows a highly sheared magnetic field in the core of the active region, which has
positive field line helicity. The authors found that during a flare the region lost 25% of its rela-
tive magnetic helicity. Comparing the field line helicity between the two extrapolations shown at
01:11UT and 01:59UT reveals that the decrease in helicity took place within the same region (the
green box) where emission from a large X-class solar flare was observed in EUV. This supports the
idea that there was indeed a decrease in helicity associated with the flare. It is worth noting that
Moraitis et al. [2021] uses relative field line helicity (Section 1.1.3). However, they show that using
the ordinary field line helicity (in poloidal-toroidal gauge) leads to the same qualitative conclusions
in this example, albeit with lower values.

1.3. Non-ideal evolution
Suppose (1.42) is generalized to

∂B⃗

∂t
= ∇×

(
u⃗× B⃗

)
−∇× N⃗ , (1.57)

where N⃗ = E⃗ + u⃗ × B⃗ represents some non-ideal term in Ohm’s Law. A common example would
be N⃗ = ηJ⃗ corresponding to resistive MHD. It is well-known that the total helicity is no longer
conserved but can be dissipated within the volume when N⃗ · B⃗ ̸= 0. In this section, we show how
– for magnetic fields of simple topology without null points – equations (1.50) and (1.51) have
been generalized to this non-ideal case. For magnetic fields of more complex topology – for example
the solar coronal examples in Sections 1.2.2 and 1.2.3 – evolution equations have not yet been
derived explicitly. Indeed differential equations may not be appropriate since the distribution of A
is discontinuous across magnetic separatrices between different connectivity domains. Reconnection
can transport A across these separatrices, but its evolution in such a situation remains to be studied
in detail.

There is an important caveat to what follows: field line helicity can hold physical significance in a
non-ideal evolution only if the magnetic field lines themselves retain sufficient identity over time for
their topology to play a physical role. In practice, this means that the magnetic Reynolds number
(Rm) must be sufficiently large, or equivalently the (effective) resistivity must be sufficiently small.
There is no precise threshold for this, but it is already accessible for the parameters achievable in
numerical simulations, as will be illustrated in Section 1.3.2.
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Figure 1.7: Field line helicity in a nonlinear force-free model of active region NOAA 11158, from Moraitis

et al. [2021]. Panel (a) shows the field lines coloured by (relative) field line helicity in the extrapolation at

01:11UT, while panel (b) shows an image of EUV emission from SDO/AIA during the X-class flare at

01:47UT. Panels (c) and (d) show (relative) field line helicity before and after the flare (blue/red), while

panel (d) shows their difference. Credit: K. Moraitis et al., A&A, 649, A107, 2021, reproduced with

permission © ESO.
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1.3.1. Evolution equation for non-null magnetic fields
The trick for generalizing (1.50) or (1.51) to non-ideal evolution in the non-null case is to decompose
N⃗ into parallel and perpendicular parts [Yeates and Hornig, 2011], writing

N⃗ = −v⃗ × B⃗ +∇ψ. (1.58)

When the magnetic field has a simple topology, this decomposition exists globally with v⃗ and ψ
continuous throughout V , though they are not unique (as we shall discuss below). Substituting this
decomposition into (1.57) shows that, in a non-null magnetic field, we can write

∂B⃗

∂t
= ∇×

(
w⃗ × B⃗

)
, where w⃗ = u⃗+ v⃗, (1.59)

which shows that the magnetic field is still frozen in, but to the so-called field line (transport)
velocity w⃗ rather than the plasma velocity u⃗. Thus in a non-ideal evolution where v⃗ ̸= 0⃗, the field
lines slip at some velocity v⃗ through the plasma [Newcomb, 1958, Priest and Forbes, 1992, Aulanier
et al., 2006, Schindler, 2010]. Uncurling, we have

∂A⃗

∂t
= w⃗ × B⃗ +∇(ϕ− ψ). (1.60)

Thus, if we identify the same field line Lt at different times by the fact that it is frozen in to the
flow of w⃗, then a similar argument to Section 1.2 shows that

d

dt
A(Lt) =

[
ϕ+ A⃗ · w⃗ − ψ

]x1(t)

x0(t)
. (1.61)

Similarly, Aly [2018] showed that (1.51) becomes

d

dt
A(Lt) =

[
U
∂(ζ + ψ)

∂U
− (ζ + ψ)

]x1(t)

x0(t)

. (1.62)

Notice that [ψ]
x1(t)
x0(t)

=
∫
Lt
E⃗ · dl, which is precisely the parallel electric field used to define the

reconnection rate in the theory of general magnetic reconnection [Schindler et al., 1988]. It represents
the change in A(Lt) due to a (non-local) change in the magnetic flux linked with Lt. The term A⃗ · w⃗
is harder to interpret in general because it depends on the choices of A⃗ and w⃗. With the gauge

condition n̂ × A⃗ = n̂ × A⃗P on the boundary, the [A⃗P · w⃗]x1(t)
x0(t)

term effectively represents a “work

done” by motion of the field line Lt with respect to the reference field [Russell et al., 2015].
For a given non-ideal evolution of B⃗, the field line velocity w⃗ is not uniquely defined, and

consequently the identification of the field line Lt over time is not unique. Whilst the component of
w⃗ parallel to B⃗ is arbitrary – as is clear from (1.58) – it is the non-uniqueness of the perpendicular
component w⃗⊥ that changes the identification of Lt. To see that this component is non-unique,
note that (1.58) implies

w⃗⊥ = v⃗⊥ =
B⃗ × (∇ψ − E⃗)

B2
. (1.63)

On each field line we are free to specify an initial value of ψ. This does not change [ψ]
x1(t)
x0(t)

but does
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change w⃗⊥.
One situation where a natural choice of w⃗⊥ arises is the case when the field-line endpoints are

line-tied on the boundary, meaning that u⃗ = N⃗ = E⃗ = 0⃗ there [Russell et al., 2015]. In that case, we
can identify Lt over time by fixing one endpoint, say w⃗⊥(x0) = 0⃗ for all field lines. This is achieved
by choosing ψ = 0 throughout the region of the boundary where B⃗ · n̂|S < 0. At the opposite

endpoints x1(t), the values of ψ will then be fixed by [ψ]
x1(t)
x0(t)

, leading to w⃗⊥(x1) ̸= 0⃗ in general so
that these endpoints will move in time in a non-ideal evolution. We could equally well fix ψ = 0 on
the region with B⃗ · n̂|S > 0, thus defining the field lines by fixed x1 positions so that x0(t) varies
over time.

If u⃗ is non-zero on the boundary but N⃗ remains zero there (or can be neglected), then it is

possible to subtract the ideal term [A⃗ · u⃗]x1(t)
x0(t)

from (1.61) and isolate the change in field line helicity
coming from non-ideal evolution. An analogous calculation was implemented for the magnetic
winding measure by Gekelman et al. [2020] in data from a laboratory experiment of interacting
magnetic flux ropes.

1.3.2. Application to turbulent magnetic relaxation
The non-ideal evolution of A has been explored only in the context of braided magnetic fields, where
all field lines connect between two planar boundaries z = 0 and z = 1 at which u⃗ = N⃗ = 0⃗. The
most significant finding to date is that, when the magnetic field line mapping from z = 0 to z = 1
is complex with sharp gradients, the evolution of A for high Rm is dominated by redistribution
between field lines, rather than dissipation [Russell et al., 2015, Yeates et al., 2021].

To see this, consider the evolution of A on the field line traced from a fixed point x0 on the
lower boundary z = 0. Russell et al. [2015] made the natural choice w⃗ = 0⃗ on z = 0, in which case
(1.61) reduces to

∂A(x0)

∂t
= A⃗(x1(t)) · w⃗(x1(t))− ψ(x1(t)), (1.64)

where Lt is the field line defined by tracing from the fixed point x0 at subsequent times. They argued
that the A⃗ · w⃗ dominates the ψ term in a magnetic field with complex mapping, because |w⃗| scales
like |∇ψ|/B from (1.63). Since ψ(x1(t)) is a field-line integrated quantity, and since the field line
mapping has sharp gradients, we would expect |A⃗ · w⃗| ≫ |ψ| for high Rm. This was demonstrated
originally in kinematic examples (see also Yeates [2019]), and has recently been confirmed by direct
calculation of the terms in (1.64) in resistive MHD simulations [Yeates et al., 2021]. One such
simulation is illustrated in Fig. 1.8.

Watching the full evolution of A(x0) in the Fig. 1.8 simulation suggests that the A pattern
evolves predominantly by rearrangement with some fictitious flow. To see this from the evolution
equation, we can employ the seemingly unhelpful trick of labelling field lines by fixing their endpoint
x1 on z = 1, so that ψ = 0 and w⃗⊥ = 0⃗ on z = 1. Then instead of (1.64), equation (1.50) becomes

d

dt
A(Lt) = −A⃗(x0(t)) · w⃗(x0(t)) + ψ(x0(t)). (1.65)

To compute the evolution of A at a fixed position x0, we must now account for the fact that the field
lines are moving past this point with the local field line velocity w⃗(x0). Thus the time derivative in
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Figure 1.8: Evolution of field line helicity during line-tied resistive relaxation of a braided magnetic field

(see Yeates et al. [2021] for details of the simulation). Panels a-c show magnetic field lines and isosurfaces

of current density, in the initial condition (a), during the turbulent relaxation (b), and in the relaxed state

(c). Panels d-f show cross sections of field line helicity on the z = −24 boundary at the same times.

Reproduced with permission from Chen et al. [2021].
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equation (1.65) is a Lagrangian one and so at the fixed position x0 we have

∂A(x0)

∂t
= −w⃗ · ∇A(x0)− A⃗(x0) · w⃗(x0) + ψ(x0). (1.66)

Notice that all of the terms here are “local”, although ψ and A are still field-line integrated quan-
tities. The advection term w⃗ · ∇A is effectively a product of two gradients of field-line integrated
quantities, so one might expect this to be largest. It is therefore no surprise that the dominant
behaviour observed is rearrangement of the A pattern by advection.

Chen et al. [2021] took this idea and developed a variational model for turbulent magnetic relax-
ation that predicts the relaxed state to have the “simplest” pattern of field line helicity achievable
by pure advection. This already predicts the two oppositely-twisted magnetic “flux tubes” seen in
Fig. 1.8(f). However, closer inspection of the numerical simulations by Yeates et al. [2021] shows
that the other terms in (1.66) do play a role in establishing the substructure of the final state.
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